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Nucleation from a metastable state is studied for an anisotropic Ising model at 
very low temperatures. It turns out that the critical nucleus as well as configura- 
tions on a typical path to it differ from the Wulff shape of an equilibrium 
droplet. 
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1. I N T R O D U C T I O N  

We report some new results concerning stochastic ferromagnetic Ising 
models in the so-called metastabte region. Namely, we consider stochastic 
(Glauber) dynamics whose stationary states are given by Gibbs measures 
for Ising-like systems that at infinite volume, low temperature, and zero 
magnetic field exhibit a phase transition with spin-flip symmetry breaking. 
We study, similarly to what Neves and Schonann did for the standard Ising 
model, (11'12'14) a single-spin-flip Glauber dynamics in a large but finite 
volume for small (positive) magnetic fields and very low temperatures. In 
particular, we are interested in asymmetric models--models for which the 
Wulff shape (equilibrium droplet) at zero temperature is not a cube. Ising 
models are believed to have some relevance for a dynamical description of 
the crystal growth/1) The reason to consider an asymmetry stems from the 
fact that these models turn out to be simple cases where a difference 
between equilibrium and dynamical droplets shows up. The present paper 
is devoted to a study of the simplest such model, namely an anisotropic 
Ising model, 
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We analyze the nucleation of the stable plus-phase starting from the 
metastable minus-phase. In particular, we are interested in a description of 
the first passage from the configuration - !  (all spins in A equal - 1 )  to 
the configuration + _1 (all spins in A equal + 1). We show that with high 
probability in the limit of very low temperatures this transition takes place 
(i) via a formation of a critical nucleus whose shape may not be Wulff, and 
(ii) following a path that is typically given by a sequence of "non-Wulff" 
configurations. In particular, for a two-dimensional anisotropic nearest- 
neighbor Ising model with coupling constants J1 > J2 > 0 along the axes, 
the critical droplet is actually a square of edge 2J2/h (h is the magnetic 
field), while the Wulff shape is a rectangle with edges proportional to 
J1, J2' 

Notice that our statement about a drastic difference of the shape of the 
critical nucleus from the Wulff shape (and the corresponding difference in 
nucleation times) concerns the region h fixed, /3 -~ ~ .  On the other hand, 
it is expected that in the more customary region/3 fixed (large), h ~ 0, the 
shape of the critical nucleus actually is Wulff. It would be interesting to 
investigate the crossover region by discussing the limits/3 ~ ~ ,  h ~ 0 with 
different fixed/3h = ~. 

Another model suitable for the detection of the difference between 
equilibrium and dynamical droplet is a ferromagnetic Ising model with 
isotropic nearest neighbor and next nearest neighbor interaction. The criti- 
cal droplet in this case turns out to have the optimal Wulff shape--at zero 
temperature it is a (nonregular) octagon with the lengths of its sides deter- 
mined from the ratio of the nearest neighbor and the next nearest neighbor 
coupling constants. However, the growth of a droplet follows (with high 
probability for very low temperatures) a somewhat complicated path 
through non-Wulff shapes: up to a certain size it is along a sequence of 
regular octagons, then some edges remain constant, whereas other grow up 
to the critical (Wulff) shape. A study of this model involves an additional 
time scale (in this respect it is reminiscent of the standard three- 
dimensional Ising model) and is discussed in a separate publication. (8) The 
results for both models were summarized in ref. 9. 

To cover more general cases than the standard nearest neighbor 
Ising model, we developed slightly different arguments and constructions 
than those by Neves and Schonmann. (H'~2'14) We present here our new 
approach even though, in the particular case considered in the present 
paper, we could probably have worked out an extension of the somewhat 
simpler methods of Neves and Schonmann. In their present form, however, 
their methods do not apply to our situation. We believe that our alter- 
native is of some interest not only due to its more general applicability, but 
also because it clarifies some other aspects of the problem. 
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2. S T A T E M E N T  OF T H E  R E S U L T S  

We consider a discrete-time Metropolis dynamics for a two- 
dimensional nearest-neighbor ferromagnetic asymmetric Ising model. The 
space of the process is { - 1 ,  1 }A with A being a two-dimensional torus: 
the set {1,...,M} 2 with periodic boundary conditions. A configuration 
~r �9 { - 1, 1 } A is a function 

a: A--* {--1, 1} 

The value ~r(x) is called the spin at the site x � 9  The energy of a 
configuration a is 

H(a) = - J._2 h 2 ~ a(x) a ( y ) - @  ~ a(x)a(y)--~ ~ a(x) (1) 
( x , y ) a ~ ' ( A )  (x ,y)~q/ ' (A)  x E A  

where .gff(A) is the set of horizontal nearest neighbor pairs in A and ~ ( A )  
is the set of vertical nearest neighbor pairs in A. We suppose that 

_ [2J[~ 3 
Jl>.J2}>h>O and M > ~ T  ) (2) 

Further, to avoid some "Diophantine" problems, we assume that 2J1/h, 
2Jz/h, as well as their difference are not integers. 

The dynamics is prescribed by the following updating rule: 

Given a configuration a at time t, we first choose randomly a site 
x � 9  with uniform probability t/IA]. Then we flip the spin at the site x 
with probability 

exp{ - f l [ A , H ( a ) ]  + } (3) 

where 

with 

AxH(a ) = H(6 (x)) - H(a) 

fa(y)  whenever y C x  
a(X)(Y)=(-a(y)  for y = x  

and (c) + = max(c, 0) for every c �9 N; fi is the inverse temperature. 

Our dynamics is reversible with respect to the Gibbs measure 

#A(a) -- exp{ - f i l l (a)}  
ZA 
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with the partition function 

ZA = Z exp{ - fill(a) } 
a e { - - 1 , 1 }  A 

in the sense that the transition probabilities of the Markov chain P(a  -~ a') 
satisfy 

#A(a) P(a --+ a') = #A(a') P(a' --+ a) 

The space of  trajectories of the process is 

C2_-- ( { - 1 ,  1}A) ~ 

An element in ~2 is denoted by co; it is a function 

0): N ~ { - 1 , 1 }  A 

We often write e) = ao, al,..., at,.... 
Given any set of configurations A c { - 1, 1 }A, we use z A to denote the 

first hitting time to A: 

ZA = inf{t ~> 0: ~rteA } (4) 

Sometimes we use P , ( . )  to denote the probability distribution over the 
process starting at t = 0  from the configuration q. We use - 1 ,  +1 to 
denote the configurations with all spins in A equal to - 1, + 1, respectively. 

We are interested in dynamics at very low temperatures. Namely, we 
will discuss the asymptotic behavior, in the limit fl --* ~ ,  of typical paths of 
the first escape from -_1 to + !. 

Having in mind a low-temperature dynamics, it is natural to describe 
configurations in terms of their Peierls contours. Namely, for every 
a e { - 1, 1 }A we consider the union C(a) of all closed unit squares centered 
at sites x with a ( x ) =  + 1. Connected components of the boundary of C(~r) 
are called contours. A contour y is thus a polygon connecting vertices of 
dual lattice 7/2+(1/2, 1/2) such that any vertex is contained in an even 
number (0, 2, or 4) of unit segments belonging to 7. Often we shall identify 
a configuration a with the corresponding set C(a). 

With a certain dose of imagination, one could view an evolution of a 
configuration a with energy (1) as a movement of a point in a complicated 
energy landscape (in "phase space" )--like that shown on Fig. 1, simplify- 
ing, however, the multidimensional space of configurations to a two-dimen- 
sional space--with a natural tendency to follow a downhill path and an 
occasional, random and rather unprobable, uphill move. An important role 
is played by local minima of this landscape. Namely, let us introduce 
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Fig. 1 

~(L1, L2) as the set of all configurations (up to a translation) with all 
spins - 1  except for those in a rectangle R(L1, L2) with corners on the 
dual lattice and horizontal (vertical) sides of length L, (L2). It is easy to 
verify that, for any (Ll, L2) with rain(L1, L2)> 1, these configurations 
correspond to such local minima. It turns out (t1'~2~ that small rectangles, 
namely those with small values of min(L~, L2), tend to shrink, while large 
rectangles tend to grow. The dynamical mechanism responsible for this 
behavior has been clarified in refs. 11 and 12: it is based on a competition 
between the creation of a unit square protuberance attached to an edge of 
the rectangle (and consequently a growth of a side of the rectangle by one) 
and an erosion of an edge. When deciding which tendency wins, one has 
to realize that the typical time for the creation of a protuberance on a verti- 
cal or horizontal edge is of the order exp{2fl(Ji- h)} or exp{2fl(J2- h)}, 
respectively, while the typical time for eroding an edge of the length l is 
~exp{flh(l-1)} (see refs. 11 and 12 for more details). 

Notice that the anisotropy reveals itself, in addition to different growth 
rates in different directions, also in an anisotropy of "interactions" between 
separate droplets. Namely, two droplets approaching each other in the 
horizontal direction will coalesce, while if they approach in the vertical 
direction they have to overcome an energy barrier and the time needed to 
make their coalescence probable is of the order exp{2fl(J1-J2) }. If a 
droplet is too small, its existence is too ephemeral to participate in a 
coalescence. This will be an important factor when discussing the detailed 
definition of a set of configurations attracted to the configuration -_i. 

The configurations in N(L1,L2) are characterized by the point 
L - ( L 1 ,  L2) in (7/+) 2. The origin OE(Z+) 2 represents the configuration 
-_1. Points with L~ or L2 = M represent rectangles winding around the 
torus. We use N to denote the set of all rectangular configurations, 

= ~ ~(L , ,  L2) 
LI,L2 
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In (77+)2 we introduce the distance 

d(x, y) = max(Ix1 - Xz], ]Yl - Y2]) 

for x = ( x l , x 2 ) ,  Y-(Y1,  Y2)E(77+) 2" A saddle point between two neigh- 
boring local minima, say (L1, L 2 -  1) and (L1, L2), is any configuration 
such that 

H(~) = min max H(~r) 
o ~ : R ( L I , L 2 - - 1 ) ~ R ( L I , L 2 )  ~ o  

(where o~: a --+ ~ denotes a generic path starting from ~ and ending in v). 
It is easy to see that it is represented by the set C(a) consisting of a 

rectangle R(LI, L2-1) with a unit square attached to one of its sides of 
length L~. We will use ~(L1,  L 2 -  1; L1, L2) to denote the set of all such 
configurations. 

A global saddle point is any configuration ff such that 

H( f f )=  min max H(a)  (5) 
e o : - - l ~  + 1  ~ e a ~  

It turns out (see Remark at the end of Section 3.1 below) that the set of all 
global saddle points is the set ~ of all configurations ff giving rise to a 
unique contour y consisting of a rectangle with sides * * L2,  L 2 - 1, and a unit 
square attached to one of its longer sides (see Fig. 2). Here 

L* = I-~-21 + 1 (6a) 

where [-. ] denotes the integer part. We also introduce 

For any 5 e r one has 

H(ff) - H( - 1 ) - / ' ( h )  = (2J, + 2J2) L* - h i (L* )  2 - L* + 1 ] 

for the "height" of the global saddle point. 

�9 t 
L 2 

L:-I 

R 

L: 

Fig. 2 
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Using this fact, we shall prove that the first excursion from - 1 to + _1 
typically passes through a configuration from N and the time needed for 
this to happen is of the order exp(~F). 

Let f -1  be the last instant in which a, = - 1  before ~+~: 

~ - l - m a x { t < ~ + _ l :  a~= - 1 }  (7) 

Let 
~ =  min{t > ~  1: c r ,=~}  

Theorem 1. We have 

lim P_l( f~<z+_~)= 1 (8) 
//~oe 

Theorem 2. We have 

lim P l(exp[f l(F-e)]  <~+_~ < e x p [ f l ( F + e ) ] ) =  1 (9) 
/3~oe 

for every e > 0. 

Notice, as already mentioned in the Introduction, that a droplet of 
least overall surface tension covering a fixed area is given by the Wulff 
construction ~ and, at very low temperatures, is close to a rectangle 
proportional to R(L*, L*). In spite of this, escaping trajectories are passing 
through ~ - - a  configuration close to critical nucleus R(L*, L*). 

Moreover, we shall see that a typical first excursion follows a rather 
well-specified path that visits certain growing rectangular, almost square, 
configurations at well-defined moments. 

To state this result, we first introduce a standard tube (of rectangles) 
as a subset ~- of (Z + )2 consisting of points corresponding either to "almost 
squares" or "large rectangles" (with either x2 = L* or x~ = M): 

Y = {x ~ (Z + )2: d(x, 501) ~ 1 } ~ 502 u ~3 (10) 

Here 

~'('~1 = {(Xl, X2) ~ (7~+) 2:1 < X  1 =x2<~L* - 1} 

5~ = {(Xm, x2) ~ (Z + )2:x2 = L*, L* ~< xl ~< M} (1 1 ) 

~3 = {(Xl, X2) E (77+)2:X1 = M, L* ~< x2 ~< M} 

We call a standard sequence of rectangles any sequence x(~),..., x (2M- 1), 
x (i) e (g + )2 such that: 

1. { x ( i ~ } i =  1,..., 2 M _  ~ ~ Y .  
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2. x ( l )=(1 ,  1) and the sequence {x(i)}i=l,...,2 M 1 is monotonic and 
consists of nearest neighbors in the sense 

(i+ x(i+I)~_~ (x~i+l).X. 2 1))= (X]O X~20) + e  

where e is either e~ = (1, 0) or e2 = (0, 1). 

Let %, vt,..., z ..... be random times after ~_~ at which ~, visits the set 
of rectangular configurations (after a change): 

To =~  1 (12) 

G+l=min{t>%:r n = 0 ,  1,2 .... 

We say that at is an z-standard path if: 

1. Go = -_1, {o',,},=o,1,.. is a standard sequence of rectangles (Fig. 3). 

2. Random times z, satisfy the following conditions: 

(a) z l < e  ~, r 2 - r ~ < e  ~' 

(b) exp{fl[h(L-2)-e]}<...%-r._,<...exp(fih(L-2)+e]} (13) 
whenever cr.. ~ ~ (L ,  L) for 2 ~< L ~< L* 
or G e ~ ( L - 1 ,  L) for 3 <~L<.L~ 

(c) exp{fl(2J2-h-e)}<...zn-r._,<<.exp{fl(2J2-h+e)} (14) 
whenever G.  e ~ (L ,  L*)  for L* + 1 ~< L ~< M 

(d) exp{fi(2J~-h-e)};%-%_~<...exp{fl(2J~-h+e)} (15) 
whenever o-~~ e ~ (M,  L) for L* + 1 ~ L ~< M 

We use 5~ to denote the set of all e-standard paths. 
Our results about the asymptotics of the first excursion from - 1  to 

+ _1 are then summarized in the following theorem. 

M 

Fig. 3. A standard sequence of rectangles. 
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T h e o r e m  3. For every e > 0  

lim P_l({O't}t=l,2,...~dG~)= I (16) 
fl~co 

Before indicating the proof of our crucial result, namely Theorem 2, let 
us state several lemmas. First, we use the reversibility to prove that the 
time necessary to reach a particular configuration is greater than or equal 
to the exponential of the concerned energy difference multiplied by the 
inverse temperature. 

L e m m a  1. For  every e > 0  and any configurations q, a such that 
H(q) > H(a)  one has 

lim P~(% < exp{fl[H(t/) - H(c r ) -  e] }) = 0 (17) 
fl~oo 

Proof. Given T~ N, one has 

T--1 
Pa(Tr/< Z)= Z 2 P(o 0=0-, 0-1=~1,..., Os l=ffs-1,  ~ 

s=l 6l,...,ffs l~r/ 

= exp{ - f i [ H ( t / )  - H(a ) ]  } 

T 1 
X 2 Z P(~ ~ 1,'", ~  ~176 

T exp{ - fi[H(t/) - g ( a ) ]  } (18) 

To conclude the proof, we choose 

T =  [exp{fl(H(r/) - H(a) -- 6)}] 

with 6=min(e ,  {H(q)-H(a)} /2)  and take fl--, ~ .  | 

For any ( L 1 , L 2 ) ~ Z  2 ,  let us denote I=min(L1,L2) and L =  
max(L~, L2). The following three lemmas are direct consequences of 
Theorem 1 from ref. 11 or of the arguments used in its proof. 

The first lemma claims that the size of a critical droplet is L* and 
indicates what barrier one has to overcome when starting from a local 
minimum. 

Lemma 2. (m Using PLI,L2 to denote P~ with a ~ ( L 1 ,  L2), we 
have 

lim PL,,L2(Z_I_ < ~ + 1 ) =  1 (19) 
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and for every e > 0 

lim PLI,L2('C ~>exp{ f l [h ( l -  1 ) + e ] } ) = 0  (20) 
f l~ov 

whenever L1 and L2 are such that l = m i n ( L 1 , L 2 ) < L *  and L =  
max(L1, L2) < M -  1. Further, 

lim PL1,L2(~+_~ < ~  1) = 1 (21) 

and for every e > 0 

lim PLI,L2( ~ + ~ > exp {/3(2J 1 -- h + e) } ) = 0 (22) 
f l~co  

whenever L1 and L2 are such that rain(L1, L2) ~> L*. 

The following lemma says that subcritical shrinking is isotropic. 
Namely, starting from a subcritical rectangular configuration, it is very 
probable that we will first cut a shorter edge in the time given by the height 
of the corresponding barrier. 

kemma 3.! 11) Starting from ~ o e ~ ( L 1 ,  L2), let 

~ = i n f { t > O :  a t e ~ \ { a o } }  (23) 

If l = min(L~, L2) < L* and L = max(L1, L2) < M and e > O, then: 

(i) l i m ~  ~o PLI ,L2(~ ~ N(L'I, L ; ) ) =  1 
whenever L] and L;  are such that, 
if L~ ~ L2, max(L],  L~) = L - 1 and min(L],  L;)  = l, 
or, if L1 = L 2  = L, max(L],  L~) = L and min(L'l, L;)  = L - 1. 

(ii) l i m ~  ~ PL~,L2(exp{fl[h(l-- 1)--~]}  
< f ~ < e x p { f l [ h ( l -  1 ) + e l } ) =  1 
for any e > 0. 

Finally, the third lemma states that a supercritical droplet first grows 
in the "easier" direction, and only after L~ hits M, does the side L2 start 
to increase. 

k e m m a  4. (m Whenever l>~L*, L I < M ,  and e>O, one has 

lim PL~,L2(a~e~(L1 + 1, L2) )=  1 (24) 
f l~vo 

and for every e > 0 

lim PL,,Lz(exp{[3(2J2 -- h -- e)} < "ge < exp{/J(2J2 -- h + ~)}) = 1 (25) 
f l -- .~ 
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For LI = M, L 2 1> 2, and any e > 0 one has 

lira PL1,L2(ff~e e N(M,  L2 + 1 )) = 1 (26) 
fl~oc 

and 

lim PL1, L2(exp { fl(2Jl -- h - e) } < f e  < exp { fl(2J1 - h + e) } ) = l (27) 
fl~oo 

Remark. It is possible to prove a stronger version of Theorem 3 
giving rise to a more accurate description of the characteristics of typical 
paths of the first excursion from - 1 to + 1. In particular, one can prove 
that, with probability going to 1 as fl ~ oe, during the transition from - 1  
to a protocritical configuration (corresponding to the part L~ of the 
standard tube), the pluses form a connected cluster C without holes and 
with a monotone boundary ~C. Here, "monotone" means that 8C intersects 
the four edges of its rectangular envelope R(C) in four intervals, and its 
length equals that of the perimeter R(C). All these properties follow from 
stronger versions of lemmas whose proofs can again be found in refs. 10 
and 11. 

3. PROOF OF T H E O R E M S  

The most crucial is the proof of Theorem 2. It will consist of two steps. 
First, we define a set d c { -  1, 1 }A satisfying the following three 

properties: 

1. For  every a E d  and any e > 0  one has 

lim P~(r_ 1 <~+~_)= l 
fl~ov 

and 

. 

(28) 

lira Po(~-I  < e x p { f l [ h ( L *  - 2) + e l  }) = 1 (29) 

Any path { a , } , ~  such that ao=  -_1 and a , =  +_1 for some t has 
to pass through the "boundary" 8 d  of the set d defined by 

3 d =  { r / = a  (x) for some x; a e d ,  t / 6 d  } (30) 

Namely, there exists s < t such that a, ~ 8 ~ .  

822/70/5-6-4 
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3. The minimal energy in ~ d  is attained for "protocritical" (global 
saddle) configurations a ~ ~;  namely, 

min ( H ( a )  - -  H (  - -1 ))  = H ( ~ )  - H (  - -  -1 ) = F 

min ( H ( a )  - H ( ~ ) )  > / h  > 0 
a e 0 ~ \ ~  

(31) 

The second step will be to prove, for any e > 0, that before the time 
given by the upper bound from (8), one certainly reaches the boundary of 
d ;  namely, 

lim P - ! (%d  >/T(e)) = 0 ( 3 2 )  

with 

T(e) = exp{/3(F + ~)} (33) 

Once the set d satisfying the conditions 1-3 is constructed and the 
equality (32) is.assured, the proof can be easily completed. 

Indeed, starting from a e N ,  the probability of flipping a s p i n - 1  
adjacent to the unit square protuberance in such a way that a stable 
"protuberance of length 2" is created is not smaller than l/[A] (see refs. 11 
and 12 for more details). Then, for any e > 0, it follows from Lemmas 2 and 
4 that the probability to reach + ! before reaching -1 ,  and to reach it in 
a time needed to create a minimal protuberance, can be bounded from 
below: 

1 
P ~ ( ' c  + 1 < ~ -_1) >~ ~ - ~  

lim P~(r+_i < e x p { 2 J l - h + e }  Iv+_t < z _ l )  = 1 

(34) 

On the other hand, Lemma 1 and the property 3 of ~ imply that one 
needs a much longer time than T(e) to reach 0 d \ ~ ,  provided e < hi2 

lira P-l(z0~\~ < exp{fl(F+ h -- ~)}) = 0 (35) 

Clearly, 

P _ ! ( z o g \ ~ < ~ ) ~ P  I(zo~\~<T(e))+P_!(zo~>~T(e)) (36) 
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Taking e < hi2, Eq. (35) implies that the first term on the right-hand side 
of (36) vanishes. Thus the relations (34) and (36) and the strong Markov 
property allow one to reduce the proof of the equality 

lim P l('C+t_: TM T(t;))=0 (37) 

to the proof of (32). 
Finally, from Lemma 1 and the properties 2 and 3 of d it follows 

directly that one cannot reach + ! in a too short time, 

lira P_a(r+~ <exp{f l (F-e)})=0 (38) 

Thus, to complete the proof, it remains to construct the set d and to 
prove the equality (32). 

3.1. The  Const ruc t ion  of  d 

First we introduce the notion of acceptable configurations 
0"~ {--1, 1} A. Any configuration o- can be identified with the collection 
{ Ca,..., Ck } of its maximal connected components of plus spins (consider- 
ing the union of all closed unit squares centered at the sites occupied by 
plus spins). To any such component C we assign its rectangular envelope 
defined as the minimal closed rectangle R(C) (with edges parallel to the 
coordinate axes and vertices on the dual lattice) containing C. As before, 
we consider a strip winding around the torus to be a rectangle with a side 
of length M. If none of the rectangles R(Ca) ..... R(Ck) is winding around 
the torus, we call the corresponding configuration acceptable. 

For any acceptable configuration o-, there always exists a unique com- 
ponent of minuses winding around the toms. The contours touching it are 
outer contours. Given any outer contour 7, we use C(7) to denote the region 
enclosed in it and R(7) to denote the rectangular envelope R(C(7)). Notice 
that every edge of R(7) contains at least one unit segment belonging to 7. 

Now, for any acceptable a, we shall construct a new configuration 

6 =Sa  

by "filling up" and "gluing" together some of its rectangular envelopes. To 
this end we first introduce the notion of interacting rectangles and chains 
of them. Two rectangles R = R(La, L2) and R ' =  R(L'a, L'2) are said to be 
interacting if one of the following three possibilities occurs: 

(i) The rectangles R and R' intersect. 
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(ii) There exists a unit square centered at some lattice site such that 
one of its vertical edges is contained in R and the other in R'. 

(iii) There exists a unit square centered at some lattice site such that 
one of its horizontal edges is contained in R and the other in R' and, at 
the same time, min(L 1, L2,  L ' I ,  L~) >~ 1", where 

l* = I2(Jl  h J2)] + 1 

(Neither R nor R' is ephemeral.) 

A set of rectangles R1,..., Rm is said to form a chain cg if every pair (Ri, Rj) 
of them can be linked by a sequence {R;1,..., Ri,} of pairwise interacting 
rectangles from cg; Ri 1 = Ri, Rio = Rj, and R~t and R~1+l are interacting for 
all l = 1 ..... n -  1. 

Given a collection of chains cg 1 ..... cgn we start the following iterative 
procedure: 

1. The chains c~1) of the "first generation" are identical to ~ ,  
j = l  ..... n. 

2. Having defined cg}r), we construct rectangular envelopes RJ r) of the 
sets 

UR 
R ccg} r) 

and the maximal chains c~}r+ 1) of them. 

The procedure ends once we reach a set of chains each consisting of 
a single rectangle. Notice that every pair from the resulting set of non- 
interacting rectangles /~1 ..... /~, is such that either (1) their distance is at 
least xf2, or (2) (if their distance is 1) they are either "almost touching by 
corners" (see Fig. 4A) or they are placed at a distance 1 in the vertical 
direction and at least one of the two, say R(L1, L2), is ephemeral, 
min(L~, L2) < l* (see Fig. 4B). 

Starting now from any acceptable configuration a, we apply the above 

FIG> 4A FIG 4B 

Fig. 4 

[]  
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construction on chains of rectangular envelopes of its outer contours and 
define 6 as the configuration obtained by placing the spin + 1 at all sites 
inside the resulting rectangles/71 ,...,/~, (filling up the rectangles). 

It is easy to verify that 

H(a) >~ H(6) (39) 

Indeed, notice that whenever a configuration ~ has contours 7', ~" with 
interacting rectangular envelopes R' =R(7'),  R"= R(7"), we will decrease 
the energy by filling the rectangular envelope of the union of R' and R". 
This is evident in the case (i) of the definition of interacting rectangles (the 
numbers of horizontal and vertical bonds separately are nonincreasing, the 
volume occupied by pluses is increasing) and in the case (ii) (flipping the 
minus spin in the center of the unit square touching R' and R" the energy 
decreases since J1 >/J2)- In the case (iii) we observe that when filling the 
rectangular envelope of R' ~ R" with pluses, one gains at least hi*, which 
suffices, according to the definition of l*, to compensate the loss of no 
more than 2(J l - J2 ) .  Using this observation in an iterative manner, we can 
construct a sequence of configurations of decreasing energy starting with a 
and ending with 6. 

Now we are ready to define the set d .  Namely, we introduce d as the 
set of all configurations a such that every resulting rectangle /~(L~, L2) 
from the configuration 6 is subcritical, l=min(L~,L2)<L* and 
L = max(L 1, L2) < M -  1. 

Property l of the set sr is a direct consequence of the definition of d 
and of Lemma 2. Since property 2 is obvious, again directly from the 
definition, our next task is to analyze the boundary c3s~r and to prove 
property 3. Let r/ec?~4. Then there exists a s d  and x such that 
r/= a (xl r  It is clear that the mapping ~ ~ ~ is monotonic. Namely, if 
~1"~2 (i.e., by definition, {x[~l (x)= +1} ~ {x]~2(x)= ~-1}), then also 
~1 ~ 42. As a consequence, a(x) is necessarily - 1 ;  otherwise a e ~ would 
imply also t/e ~ .  Moreover, the site x lies outside of all rectangles/~ ..... /~, 
corresponding to 6. Among the rectangles corresponding to t~ there exists 
a rectangle R(L~, L2) with the following properties: 

1. /~ is supercritical, min(L~, L2) i> L* or 2 ~< rain(L1, L2) < L* and 
L = max(L1, L2) = M. 

2. It contains the site x and several rectangles /~, say, /~  ..... /~k, 
corresponding to 6; the remaining rectangles Rk+a,..-,/~, are also 
rectangles of r~. 

Our aim now is to prove that 

H(r/) -- H( - l )/> (2J 1 + 2J2) L~ - h i (L*)  2 - L* + 1 ] (40) 
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If/~ is winding around the torus, the inequality (40) is clearly satisfied (the 
overall length of the boundaries of rectangles /~1,...,/~k is necessarily at 
least M). Let us thus suppose that /~ is not wrapped around the torus. 
Consider first the configuration q, H(t/)>~ H(O), whose set of pluses consists 
of the site x and the rectangles/~1,...,/~k (energy decreases when skipping 
the subcritical rectangles /~k+l ..... /~s). Further, consider the set C (~ con- 
sisting of the union of the unit square q(x) centered at the site x and those 
rectangles among /~1,...,/~k that intersect q(x) along its edge. Let us take 
now the rectangular envelope/~(1) of C (~ and distinguish two cases: either 
the rectangle /~(1) is supercritical or it is not. [-Notice that both C (~ and 
/~(1~ may actually coincide with q(x).] 

If/~(~) is supercritical, we decrease the energy of q further by erasing 
all rectangles among /~  ..... Rk that were not contributing to the set C (~ 
and consider the configuration yielded by the set C (~ Since/~(~) is super- 
critical, there exists an L* x L* square Q* contained in/~(~ and containing 
the site x. Given the fact that the rectangles /~1 ..... Rk are mutually non- 
interacting, there are at most two among these rectangles that contribute 
to C (~ Moreover, if there are two, they intersect the unit square q(x) 
along its opposite edges. Hence, always either the row or the column 
passing through, x intersects the set C (~ only in q(x). We decrease the 
energy by shrinking further the configuration corresponding to C (~ its 
intersection with Q* (taking into account the fact that the concerned 
rectangles are subcritical), thus obtaining the configuration q whose 
boundary necessarily contains 2L* horizontal and 2L* vertical bonds (as 
Q* does), while its pluses are covering the area that is smaller by at least 
L * - 1  sites of the mentioned row or column than the area of Q*. This 
yields the bound (40). 

Next, consider the case when /~(1) is subcritical. Take /~(~) and all 
rectangles among/~, . . . , /~k that were not used for C (~ and construct from 
them the set of chains cg~) of the first generation. A sequence ~(r~ ~ j  , 
r = 1,..., m, of chains of following generations is obtained from it by itera- 
tion. Since the rectangles R1,...,/~k are mutually noninteracting, for every 
generation r we get a chain, say odor), consisting of a rectangle /~(r) con- 
taining the site x and certain subset of/~1 ,...,/~k. The remaining chains cg~r), 
j - -  2 ..... each contain just one rectangle from those among /~1,..., Rk that 
have not appeared in ~f[P), p ~< r, in the preceding steps. Clearly, there is 
only one chain in the last generation, cs {~l~(m)} ~ {x~}. 

Let us consider now the last rectangle/~(P~ among/~(r~, r = 1,..., m, that 
is subcritical and take the chain c~]p~ with the rectangles in (~P)\R(P) 
ordered in a particular way, say in lexicographic order of their left upper 
corner. Let us unite them, one by one in the given order, with the rectangle 
/~(P) until the circumscribed rectangle is supercritical. Cutting off the 
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remaining rectangles from the chain cg]p), we get the chain (~P)c (~P). Let 
us use R' to denote the last rectangle that was attached to form the chain 
~P)  and k the circumscribed rectangle to the union of rectangles from 
~P)\{/~'}. Clearly, /~ and ~ '  are subcritical interacting rectangles with a 
supercritical envelope R* of their union. Hence, there exists an L~ x L* 
square Q* contained in R* such that it intersects both rectangles/~ and R' 
in nondegenerate rectangles R and R', R =/~ c~ Q* and R ' = / ~ ' m  Q*, and 
contains the intersection R c~ R' (if it is nonempty). One has 

H(q) >~ H(R) + H(R') 

where H(R) and H(R') denote the energy of the configuration with pluses 
in R and R', respectively. To see this, it is enough to realize that the energy 
of q is certainly higher than the energy of all among the original rectangles 
_~(1), /~ , . . . , /~  that were subsequently used in the construction of 
%?]P)\{/~'} plus the energy associated to the rectangle /~' (notice that /]' 
does not intersect the remaining rectangles from the original set/~i ..... /~k 
used to construct ~]P) and it can only touch by its corners the set C(~ 
The first term can be subsequently bounded from below by H(k)  and we 
get the above inequality observing tha t /~  and/~ '  are subcritical and thus 
one gains energy by reducing them to R and R'. 

Now, if we replace the rectangles R and R' by their circumscribed 
rectangle Q*, the sum on the right-hand side above decreases by at least 
(L* - 1) h, leading thus to the inequality (40). 

Indeed, if the rectangles R and R' intersect at more than one point, 
there is a surplus of at least two bonds in the sum of their boundaries, 
yielding at least 2J2 > (L* - 1) h. If R and R' just touch in the corner, the 
boundary has the same number of horizontal and vertical bonds as in Q* 
and there are at least 2(L* - 1) minus sites inside of Q*. If R and R' are 
interacting according to case (ii) from the definition of interacting 
rectangles, the surplus of at least two vertical edges compensates for the 
lack of two horizontal edges, while there are at least L* minuses inside Q*. 

Finally, consider case (iii). Notice first that since/~ and R' are inter- 
acting and subcritical, the appearance of case (iii) necessarily means that 
L* > l*, namely, the coupling constants satisfy the inequality J1 < 2J2- The 
rectangles R and R' are separated by a row of minuses and there must exist 
a unit square q (in the concerned row) whose opposite horizontal edges 
intersect R and R'. The column passing through this square intersects the 
boundary of R u R' in at least four horizontal bonds--two of them are the 
edges of q. Suppose first that this is the only such column (and q is the only 
unit square with the property stated above); the rows below and above the 
considered separating row contain together at least L * - 1  minuses (in 
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addition to L* minuses in the concerned row) in Q* (see Fig. 5). Then we 
see that, in the configuration with pluses at all sites inside Q*, at least four 
horizontal edges in the considered column are replaced by only two, with 
two new vertical edges added in the considered row. The possible increase 
in energy associated with the replacement of two "weak" horizontal edges 
by two "strong" vertical edges is at most 2 ( J1 -  J2) and is compensated by 
filling up L* minuses of the concerned row [-recall that in the present case 
J1 < 2J2 and thus 2(J 1 - J 2 )  < L*h by the definition of L*]. The additional 
L * -  1 bonds found above and below the considered row of minuses will 
then contribute to the second term on the right-hand side of (40), leading 
to its verification in the considered case. If there exist at least two unit 
squares ql and q2 with the property formulated above, one has at least four 
surplus horizontal edges to compensate for the only two additional vertical 
edges (again, use J1 < 2J2). The L* minuses of the concerned row are then 
used for the additional term ( L * -  1)h when comparing the right-hand 
side of (40) with the energy of Q*. 

Thus, we are left with the task of finding configurations for which the 
energy equals the right-hand side in (40). Thus, let us suppose that t/ 
satisfies the equality in (40). Then, necessarily, /?(~) in the construction 
above is supercritical. If it were not and the other steps of the construction 
and filling of final chains followed, we would run into a contradiction, since 
in each of those steps the energy strictly decreases with, as the proof shows, 
the inequality (40) maintained. This excludes the possibility of having an 
equality for the starting configuration q. Similar reasoning also shows that 
r/= 0. Moreover, if two rectangles from among/~1 ..... /~k were contained in 
C (~ the bound (40) would be valid with the strict inequality. Hence, C (~ 
consists of q(x) attached to a single rectangle and to get the equality in 
(40) it must be an ( L * -  1)x L* rectangle (see Fig. 2). Thus, the only 
possibility of achieving an equality in (40) is to take t/EN and we can 
conclude that 

min H(a) = H(~)  

- - ~ 2 -  

i i 

Fig. 5 
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and 
min H(a) = H(~@) + h 

namely, property 3 of ~r 

Remark. It is easy to convince oneself that, for every a in ~ ,  there 
exists a path 05, starting at ~r and ending at + 1, such that it first passes 
through ~ ( L* ,  L*), then visits the whole sequence of rectangles R(L1, L2) 
in the sets 5r 2 and 5e 3 of the standard tube [see Eq. (10)] as well as the 
saddle points P(L~, L*; LI + 1, L*) and P(M, L2; M, L 2 + l )  between 
them, and at the same time 

max H(a)  = H ( ~ )  
ey~o3 

In other words, along this path the energy is almost monotonically 
decreasing with some uphill jump over barriers that never overcome the 
initial height. 

It follows from properties 2 and 3 of the set d and from the existence 
of the above-mentioned path 05 that 

H(~') = min max H(a) 
co: - - 1  ~ + i  a ~ c o  

so that, indeed, any a in N is a global saddle point. On the other hand, 
again by property 3 of d ,  it follows that any such a global saddle point 
is in ~ .  

3.2. Proof of Equality (32) 

The strategy of the proof is as follows: we introduce an event S~ 
consisting of a set of trajectories starting from a ~ ~ ' ,  taking place over an 
interval of time TI, and such that: 

1. If 8~ takes place, one necessarily reaches the set O d  (in a 
particular manner) before the time T1. 

Moreover, we suppose that there is a lower bound on the probability of 
this event such that, attempting many times the event d~ we can conclude, 
with the help of the strong Markov property, that after a time T 2 > Tt it 
happens with a high probability. Namely, we are assuming that: 

2. One has a uniform lower bound for the probability inf~ P(g~)>~ 
a(T1) such that 

lim [ 1 - ~( T 1 ) ] T2/TI = 0 (41) 
, 8 ~ o o  
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Hence, if we succeed in choosing times T1, T 2 and the event g~ so that the 
conditions 1 and 2 are satisfied, we will be able to conclude that, with 
probability approaching 1 as fl --* 0% one has to reach ~ d  before T 2. 

Next we pass to the construction of the event g~. It can be quite 
special, once a correct lower bound on its probability is satisfied. 

The first portion of g~ is an essentially downhill path from a to - ! .  
Namely, for every fr E d ,  tl E %, we define 

~o(1) = {(D @ s162 f r 0 = O .  ' T- -1  = tl} (42) r l 1 

The next portion of the event means simply that one is staying in the 
configuration - 1; for every t 2 > tl, t2 ~ ~, we set 

g (2) = {c0ss a t =  - 1 ,  t 1~< t~< t2} (43) tl,t 2 

Now comes a very particular growth to N starting from - ! .  Namely, our 
aim is to consider a set of paths passing through a standard sequence of 
rectangles, reaching the rectangles in random times of particular orders. 
The orders of the random times are chosen so that, roughly speaking, at 
every basin of attraction of a particular rectangle one is allowed to stay for 
a time proportional to the exponent of the product of inverse temperature 
and the height of the energy barrier that prevents an erosion and after that 
one reaches in the shortest possible time the local saddle point toward an 
enlarged rectangle. This saddle point is higher than the saddle toward the 
eroded rectangle and the exponent of the difference of the energies of these 
two barriers will be the main ingredient for the lower bound on the prob- 
ability of the event g~. To be more precise, simplifying the notation and 
writing L* for L* and QL~,L2 for the rectangle with horizontal edge L~ and 
vertical edge L 2 and with the upper left corner in the point ( - 1 / 2 ,  + 1/2) 
(the origin of 22 is the first site x in Q; the edges of Q lie on the dual 
lattice), for every t 2 E IN we set 

g ( 3 )  = {09 ~ Q :  - - ! ,  : Q l ,  l, fr t2+2=Ql,z,  f r tz+4:Q2,2} (44) t2 frt2 ~ O't 2 -b 1 

This is the portion of the path starting with -_1 and growing to Q2,2. 
Further, for every To < t2.2 < t2,3 < t3,3 < �9 " < tL*- X,L* (tL~,L2 ~ IN) w e  set 

g ( 4 )  
t2, t2,2, t2,3 ,..., tL* - 1,L* 

= ~2,2( '10~2,3  O . - - ( ' I g L ,  LOO~L,L+I("I . . .  C'~gL*I,L*__IOgL*I,L* 

(45) 

where, for every 2 ~< L ~< L* - 1, 

#L,L= {CO e f2: frrL, L = QL, L, a~ e ~(QL.L) for every 

t e [ T L ,  L, TL, L+tL ,  L--To], frTz,  L+tL, L=QL,  L+I} (45') 
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gL, L +t = {CO ~ s crT~,L+I = QL, L+ 1, ~ ~ M(QL, L+ 1) for every 

t@ [TL, L+I ,  TL, L+ ' - ~ t L , L +  1 -  T O ]  , GTLL+I+tL, L+,~- Q L + I , L + I }  

(45") 

and 

~L* 1,L * =  { O e ~ : a T L * _ I , L * = Q L * - - I , L  *, a ,e~(QL*--I ,L*)  for every 

t e  [ T L . _ I , L .  , TL.  1 ,L .+ tL.  1 , L . - - T o ]  , 0"TL. I ,L .+ ,L .  1,Z , = S L .  } 

(45") 

Here 

T2,2= t2 + 4 

TL, L + 1 = t 2 + 4 + t 2 , 2 + t 2 , 3 +  . . .  + tL ,  L 

for every 2 ~ L ~< L* - 1, and 

TL, L=TL I,L+tL-I,L 

for every 3 < ~ L < < . L * - I .  The set SL is for every L<~L* obtained by 
adding a unit square to the vertical right-hand edge of Q(L-1,  L), 
SLEN(L,L-1;L ,L) .  The time To is chosen so that To/2 is an upper 
bound on the time needed to monotonically decrease the energy from any 
configuration a to any other (say t/) through a path of "nearest neighbor 
configurations," 

To=[~( max H(a)- min H(a'))]+l (46) 
o-e {--1,1} A a'~ {--1,1} A 

Of course, So. E ~ .  
Further, we define 

~2,2 n2,3 nL* - I,L* 

~(4)~__ U U "'" U t2 
n2, 2 ~ I n2, 3 ~ I nL*-I,L* ~ 1 

where 

and 

~n2.2 ...... L,-~.L, (47) 

2,/122, ,...,rtL*-- I,L* t2,t2,2=n2,2To,...,tL*-t,L*~nL * I,L* T0 (47') 

fiL 1,L I=fiL-I,L=[exp{fl[h(L--2)+6]}] (47") 
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for every L = 1,..., L*. Choosing now the times 

{1 = [2 = [ e x p { f l [ h ( L *  - 2) + 62 }] (48) 

we define 

{1 ( tl -I t-2 (4) ) 
#~ = U ~(1) (~ (.j r~(2) n ~(3)~ #~2 ] (49) [(~ --t2 ~tT, t 1 

t l= l  t2~t l+l  

The constant 5 will be fixed later when also the reason for this particular 
choice of the constants ~ will be apparent. 

We use N(Q) to denote the set of all connected clusters C of pluses 
whose rectangular envelope is Q and such that 0C contains at least a 
segment of length not shorter than 2 in any edge of Q. The set ~ ( Q )  is a 
subset of the basin of attraction of Q in the sense that any sequence of spin 
flips decreasing the energy and leading to some rectangle R necessarily is 
such that R-= Q. 

The crucial point in the lower bound on P ( g ~ )  will be the following 
inequality valid for every e > 0 and fl sufficiently large: 

P({c0:a0 = QL 1,L ; ~s �9 N(QL-  1,r) for every s ~< t}) 

~> (1 - e~e-h(L-2)~) t (50) 

and, similarly, 

P({co: a 0 = QL, L ; Ors �9 N(QL, c) for every s ~ t}) 

/> (1 - e~#e - h ( L -  1)fl)t (51) 

To get the estimate (50) [-(51) is completely analogous], we introduce, 
following Freidlin and Wentzell (ref. 5, p. 109), an auxiliary Markov chain 
whose space of states is 

[to simplify the notation we write Q for Q L  I,L and N for M(QL- -1 ,L ) ] "  

The boundary 0N of ~ is given by 

ON = {~/= cr (x) for some x: ttr ~ ,  a �9 N} (52) 

We introduce a sequence of times 

Vo < Uo <~ Vl < Ul <~ v2 < . . .  
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with v o = 0, u~, v~ e N, 

We set 

u~=inf{t>v," a ,r  

v~=inf{t>~u~: #,ES~c~ Q} 

~.=a~., r 
v = inf{n: {.  e a~'} 

For  every s E N one has 

where 

and 

(53) 

(54) 

(55) 

Po(%~>s)>~PQ(V>s)=P(Q--+Q)~=[1-P(Q--+O~)] ~ (56) 

P(Q --+ Q) = P(~, = Q t{o = Q) (57) 

P ( Q - - + O ~ ) =  ~ P(gj=plgo=Q)  (58) 
p E O ~  

For  every e > 0 we have 

[e~#] 

S= 1 ~l,.--,ffs-I 

+ Po(~, ~ Jr for every t e [ 1, [e "e ] ] ) 

where 

P ( a o =  Q, a l  = if1,..., a s - l  = f f s - - 1 ,  ffs ( ~ )  

(59) 

~//r = {~ ~ { - 1, 1 }A: cr is a local minimum for H} 

Of course Jg  = ~ .  
We have 

Po(at r Jg for every t E [1, [e~#]])  ~< (�89 Ee~l 

for fl sufficiently large. Indeed, one can see immediately that  

/ l \ r O  
inf Po(%a < o~{_,,,}A T~ > ~M'7) 

Hence, by the strong Markov  property,  we get 

inf P,,(r162 < [e~#]) > �89 
a e { - l , l }  A 

(60) 

(61) 

(62) 
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. 

2. 

3. 

We claim that, given 

rain H ( o ) =  

for all e > 0  and all fi sufficiently large, and thus, again by the strong 
Markov property, the bound (60) is implied. 

To estimate the first sum on the right-hand side of the inequality (59), 
we first observe that if t / sO~,  then we have one of the following 
possibilities: 

The rectangular envelope of r/is Q' ~ Q with r/c~ ( Q ' \ Q )  = {x} if 
t 1 = a (x), a ~ ~ ,  and x is adjacent, from the exterior, to Q. 

r/is contained in Q, but it is not connected. 

r/ is a connected cluster whose rectangular envelope is Q, but at 
least on one edge it intersects ~/on a single unit square. 

= QL,,L2 w i t h  L 1 ~ L 2 < L*, t h e n  

(2J ,  L2 + 2J2L1) -- h L I L 2  + h(L1 -- 1) 

H(QL>L2) + h(L~ -- 1) = H(SL>L2) (63) 

where Srl.L2 is obtained from QLI,L2-1 by adding to it a unit square 
adjacent to its (short) vertical edge. Indeed, it is easy to see that for t/ as 
in case 1, one has 

H(rl ) - H ( Q  ) >>. 2J2 - h 

whereas in case 2 one has 

H01)  - H ( Q )  > h ( L  1 + L2 - 1) 

Hence, since L 2 < L*, we are left with case 3, which is easily treated and 
leads to (63). By exploiting the reversibility as in Lemma 1 and using the 
inequalities (59) and (60), it is easy to see that 

P ( Q  --+ ~ )  <~ e~e-h l~(L-  z) (64) 

for all ~ > 0 and all fl sufficiently large. From the inequalities (56) and (64) 
we get the estimate (50). The bound (51) follows in a similar way. 

From the estimates (50) and (51) it is easy to deduce that for every 
tL_  1,L, tL, L E N,  all e > 0, and all fl sufficiently large, one has 

and 

P(EL_  1,L) ~ ( l  - -  eel3e--hl~(L--2))tL-l'L 1 e-(2J2- h)a (65) 
IAI,0 

1 
P(o~L,L) >t (1 -- e ~ e  -h~(L-  1)) tL'L ~ e (2S,- h)~ (66) 
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To get the bound (65), we consider, for every a ~ L _ ~ , L ,  the following 
event: 

SL-  1,L(a) = {a = a o, ZeL_I,L <<. T O -- L, a~L_~,~ + 1 = S t ,  ZQ~,L = rQL_~, L + L, 

a t =  QL, L for every tE [ZQL, L, ZOLL+ To--L--zQL_~,L]} (67) 

To put this definition into words: every path in ~L 1,C(or) starts from 
a~N(QL-I ,L) .  In a time shorter than T o - L  it reaches QL--I,L" For every 
a~  N(QL--1,L) there exists such a path along which the energy is decreas- 
ing. Then a unit square protuberance is attached to the vertical right edge 
of QL 1,r; this occurs with probability ( 1 / I A [ ) e x p { - ( 2 J 2 - h ) f l  }. After 
that there follows a sequence of spin flips, decreasing energy, on contiguous 
sites adjacent from the exterior to Q starting near the protuberance and 
leading to QL, L" The rest of the time up to T o is spent in QL, L" 

Clearly, 

eL-~,L = U { a o = Q L - I , L ' a , e ~ ( Q L - ' , L )  
o~(QL  I,L) 

for every s ~< tL_ 1,L - To, a,L_~, L_ ro = a} 

(~ {GtL_I,L TogL 1,L(O') } (68) 

Here G~ is the time translation operation by s acting in a natural way on 
paths. Since also, directly from the definition (67), one gets 

1 
P(~L- , ,L (a ) )  >~ j - - ~  e -(2J2 h)[~ (69) 

for every a e ~ ( Q L - ~ . L ) ,  the bound (50) implies the bound (66). In a 
similar way one obtains the bound (66). Directly from the definitions (45'), 
(45"), (45"), (47), (47'), and (47") it is seen that the events ~,~,: ...... L. ~,~. are 
mutually disjoint. Hence, using (65), (66), and the Markov property, we 
get 

h2'2 t]L*- I'L* 1 
P(C(4)) ~> 2 " "  2 (1 - - e  (~ h)~) t/2,2T0 e (2J1 h)fl 

~2,2= 1 ~L. ~,L.= l [ AIr~ 

x .-. (1 - ee#e-hr*-2) "L* ~,L, r0 e-(2S2-h)fl (70) 

for every sufficiently small e >0 ,  and all fl sufficiently large. Given the 
choice (47") of the constants fi and the values of the quotients in the 
geometric series above, the sums in (70) turn out to run effectively to oo. 
Given 6 in Eq. (47"), we can choose e sufficiently small to get 

p(g(4)) >~ exp{ - [ H ( ~ )  - H(Q2,2) - 26] fl} (71) 
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Now, since the events ~(1) with different t]s  are mutually disjoint, and ~,t~ 
similarly for f~(2) we have, for fl sufficiently large, ~t l , 12~  

tl tl+t2 
P ( e a )  ~ Z ~ P(e(1,~t (~ .~(2) (3) o,1,~: n d~ ) 

t l = l  t2=tl+ 1 

x e x p {  - [ H ( ~ )  - H ( Q ~ , 0  - e ~ ]  ~ }  (72)  

Suppose that, for all e > 0 and all fl sufficiently large, we are able to prove 
that 

(1 
inf ~ P (1) (73) (~ ,~ )  i> e-~B 

t l~ 1 

Now, since for all e > 0, from Lemma 1 one has 

lira P_~(rQ,.~ < exp(2J1 + 2J2 - h - e) fl) = 0 
f l ~  

(74) 

and 

1 
p(.g(3)) >~ ~ exp{ - [H(Q2,2) - H ( -  1)] fi} 

V I I  
(75) 

From (72), (74), (75), and (48) one gets 

tl+/- 2 
E e(#~,)2c~ (3)~>exp{flh(L*- gt2 ) 2)- f l[H(Q2,2)-H(-1_)-6]} (76) 

t 2= t l+ l  

and then, from (73) and (76), one has 

p(g~)/>e-3~e rt~+ah(r*-2) (77) 

To get (73) we use the following argument: in a time shorter than To 
and with a probability larger than 1/]A] r0 we go, starting from any a s J ,  
to a configuration given by a set of noninteracting subcritical rectangles. 
Then, from Lemmas 2 and 3 and the definition of {2 [see Eq. (47')], with 
large probability one goes to -_1 before {2. We leave the details of this 
argument to the reader. 

Now let 

T1 = exp{fi[h(L* - 2) + 61] } (78) 

and 

T2 = exp{/~(r+ ~2)} (79) 
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Further,  let us divide the time interval T2 into m subintervals of  length T~ 
with m = T2/T1 supposed to be an integer. Let 

Ui = iT1, i = 1 ..... m - 1 

We have (g~ denotes the complementary  set of g )  

P I(~C~':J > T 2 )  = Z P-!(ro~e>T2'crv, =~i'i=l'''''m-1) 
O'I ,..., O" m i,~ 4 

<~ ~ P - l ( a U i  = 6i, i =  1,..., m -- 1, 
~1,..., ~m i~"  

S c ( - 1 ) ~ G u ~ C C ( 6 1 ) c ~  . . .  ~Gum_lo~C(~m_l))  

~< [1 - i n f P ( g ( a ) ) ]  m 

<~exp{e-3a~-r~+h(L*-2)~e~(r+a2-6~)e-h(L*-2)}  (80) 

If b2 > 61 + 3b, we get 

lim P I ( T c ~ > T 2 ) = 0  

Since 6, 61 are arbitrarily small, this concludes the proof  of inequality (32) 
and thus also of Theorem 2. | 

Theorem 1 is now a corollary of Theorem 2- - i t  follows from proper-  
ties 2 and 3 of the set d whose existence was established' during the p roof  
of Theorem 1. 

Finally, Theorem 3 directly follows from the results in ref. 14, Lemmas 
2, 3, and 4 and Theorem 1. 
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